*Department of Mathematics*

### Department Faculty

## The Mathematics Program

The interests and expertise of the mathematics faculty cover a broad range of mathematical areas, including algebra, analysis, topology (modern geometry), discrete mathematics (mathematics of computer science), number theory, statistics, and applied mathematics. With this spectrum of faculty knowledge, the student is afforded an opportunity to learn the contemporary view of mathematics. Inside the classroom, student comprehension is the main concern of the faculty. Outside the classroom, the faculty offers opportunities for independent study, undergraduate research, and internship supervision.

Courses in mathematics vary from the theoretical to the applied. Thus, a major in mathematics can be a foundation for a career in industry, government, teaching, or the pursuit of a higher degree in graduate school. The department faculty encourages double majors, giving students entrance to a wide variety of fields upon graduation. Majors in other disciplines can be enhanced with one of our minors in mathematics, applied mathematics, or actuarial science.

University of Mary Washington hosts a chapter of Pi Mu Epsilon, a national honorary mathematics fraternity, and a chapter of the Mathematical Association of America. The Oscar Schultz Award in Mathematics represents the department’s top academic honor and is given annually to a junior or senior in the department. Four additional scholarships are available. The recipients of the Meredith C. Loughran ’94 Scholarship are selected based on their meritorious academic record, citizenship and leadership in public service. The Merrilyn Sawyer Dodson/class of 1968 scholarship and the Mary Farley Talley ’66 scholarship each recognize the scholastic achievements of mathematics majors, while the Louise W. Robertson, M.D. ’56 Scholarship is awarded to a student majoring in mathematics or a health field.

Qualified mathematics majors having at least a 3.5 GPA in mathematics courses and an overall GPA of at least 3.0 may graduate with Honors in Mathematics by completing a directed study or undergraduate research which culminates in an approved Honors thesis.

Majors are encouraged to fulfill the general education experiential learning requirement by completing URES 197, MATH 491, MATH 492, or MATH 499. Alternatively, majors may meet this requirement by participating in an approved supervised on-campus or off-campus experiential learning activity developed in consultation with the department (such as the UMW Summer Research Program or a similar program at another college or university). **To complete the experiential learning requirement through a summer research experience, contact the department chair for more details.**

## Requirements for the Mathematics Major

Thirty-six (36) credits are required. Eighteen (18) credits must be from the following mathematics courses: 223, 224, 300, 431, 471 and either 432 or 472. An additional six (6) credits must be 400-level with at most three (3) credits of directed study (491/492). An additional nine (9) credits must be from mathematics courses at the 300- or 400-level. The remaining three (3) credits must be from: mathematics courses numbered 207 or above; computer science courses numbered 220 (except CPSC 302) or above; physics courses numbered 105 or above (except PHYS 108); PHIL 306. No internship (499) credits will count for the major. At most six (6) credits of directed study (491/492) will count for the major.

## Mathematics Course Offerings

**Mathematics course offerings will be found under the 4 letter code of MATH in the course listings.**

**110 – Finite Mathematics with Applications (3)**

Includes topics such as sets, logic, probability, statistics, and counting. Other topics are at the discretion of the instructor. Designed for the non-major.

**111 – Precalculus (3)**

Emphasis on elementary functions including rational, exponential, logarithmic and trigonometric functions. Designed for students who intend to take calculus.

**115 – Introduction to Mathematical Modeling (3)**

Mathematical topics include linear functions, linear regression, curve fitting, probability models, and difference equations. Emphasis on environmental issues such as population growth, pollution, natural disasters, epidemics, genetics, and patterns in nature.

**120 – Quantitative Reasoning for the Sciences (3)**

Designed to prepare students for success in the sciences by providing them with appropriate mathematics and quantitative reasoning skills. Course topics include measurement and estimation, growth and decay phenomena, scaling transformations, and an introduction to probability and statistics.

**121 – Calculus I (3)**

First course in calculus. Includes functions, limits, derivatives, and applications. May include some proofs.

**122 – Calculus II (3)**

Prerequisite: MATH 121. Includes antiderivatives, definite integrals and their applications, the fundamental theorem of calculus, derivatives and integrals of inverse functions, and techniques of integration. (Prospective mathematics majors should take this course during their freshman year.)

**200 – Introduction to Statistics (3)**

First course in statistical methods. Includes descriptive and inferential techniques and probability, with examples from diverse fields. Topics vary with instructor and may also include sampling methods, regression analysis, and computer applications.

**201 – Introduction to Discrete Mathematics (3)**

Designed to prepare prospective mathematics majors for advanced study in the field by introducing them to a higher level of mathematical abstraction. Topics include sets and logic, functions and relations, methods of mathematical proof including mathematical induction, and elementary counting techniques. (Prospective mathematics majors should take this course during their freshman year.)

**204 – Mathematical Concepts and Methods I (4)**

Prerequisite: EDUC 203. Mathematical concepts and methods of teaching for the elementary school. Topics include number systems and their properties, problem solving, and topics in number theory. Course intended for students certifying to teach grades PreK-6. Significant field experience required. (3 lecture credits, 1 practicum credit).

**205 – Selected Topics in Mathematics (1-3)**

Prerequisite: Course dependent. Opportunity for additional study of lower-level topics in mathematics.

**207 – History of Mathematics (3)**

The history of mathematics begins with the early numbering systems and mathematics of the Egyptians and the Babylonians. The course then turns to the Greeks and their emphasis on logical deduction and geometry. The Arabs develop algebra in the Middle Ages, and calculus is created during the Age of Reason. The development of individual branches of mathematics then is studied (probability, number theory, non-Euclidean geometry, set theory, and topology). The course ends with the Computer Age and implications for the future.

**223 – Calculus III (3)**

Prerequisite: MATH 122. Includes analytic geometry, parametric equations, polar coordinates, improper integrals, L’Hôpital’s rule, sequences, and infinite series.

**224 – Multivariable Calculus (3)**

Prerequisite: MATH 122. Includes vectors in two- and three-dimensional space, vectorvalued functions, functions of several variables, partial derivatives, multiple integrals, and line integrals.

**280 – Statistical Methods (3)**

Prerequisite: MATH 200. Second course in statistical methods. Includes one-way and higher ANOVA, multiple regression, categorical data analysis, and nonparametric methods with examples from diverse fields. Topics vary with instructor and may also include time series and survival analysis.

**300 – Linear Algebra (3)**

Prerequisites: MATH 122 and MATH 201. CPSC 125 may be used as a substitute for MATH 201 with department approval. An introduction to linear algebra. Usually includes matrix algebra, systems of equations, vector spaces, inner product spaces, linear transformations, and eigenspaces.

**312 – Differential Equations (3)**

Prerequisite: MATH 122. Ordinary differential equations which may include Laplace transformations, linear differential equations, applications, approximations, and linear systems of equations.

**321 – Number Theory (3)**

Prerequisite: MATH 201. CPSC 125 may be used as a substitute for MATH 201 with department approval. An elementary, theoretical study of the properties of the integers.

**325 – Discrete Mathematics (3)**

Prerequisite: MATH 201. CPSC 125 may be used as a substitute for MATH 201 with department approval. Includes topics such as discrete probability, graph theory, recurrence relations, topics from number theory, semigroups, formal languages and grammars, finite automata, Turing machines, and coding theory.

**330 – Foundations of Advanced Mathematics (3)**

Prerequisite: Any Mathematics course numbered 223 or higher. Introduction to mathematical reasoning and rigor. Includes topics such as basic logic, set theory, mathematical induction, relations, functions, sequences, cardinality, elementary number theory, and axiomatic construction of the real numbers. Emphasis placed on reading mathematics, understanding mathematical concepts, and writing proofs.

**351, 352 – Numerical Analysis I. II (3, 3)**

Prerequisite: MATH 223 and either MATH 300 or 312. Mathematics 351 introduces the theory and applications of the basic computational techniques of numerical approximation. Topics include an introduction to computer programming and algorithms, root finding, interpolation, polynomial approximation, numerical differentiation and integration, and numerical linear algebra. Mathematics 352 expands on the basic approximation techniques to include scientific computing. Topics include methods of simulation, initial value problems and boundary value problems for ordinary/partial differential equations, and applications in science and engineering. Only in sequence.

**361 – Topics in Mathematics (3)**

Prerequisite: Course dependent. Opportunity for additional study of mathematical topics.

**372 – Modern Geometry (3)**

Prerequisite: MATH 300. Axiomatic development of various geometries including modern Euclidean and non-Euclidean geometry, finite geometries, hyperbolic geometry, and elliptic geometry. Topics could also include convexity, transformational geometry, projective geometry, and constructability.

**381, 382 – Probability and Statistical Inference (3, 3)**

Prerequisite: MATH 223. An introduction to probability theory and calculus-based statistics including probability distributions of discrete and continuous random variables, functions of random variables, methods of estimation, and statistical inference. Only in sequence.

**411- Chaotic Dynamical Systems (3)**

Prerequisite: MATH 223. Chaotic dynamical systems including iteration, graphical analysis, periodic points, bifurcations, the transition to chaos, fractals, Julia sets and the Mandelbrot set.

**412 – Complex Variables (3)**

Corequisite: MATH 471. Analytic functions, Cauchy-Riemann conditions, integration, power series, calculus of residues, conformal mappings and applications.

**431, 432 – Abstract Algebra (3, 3)**

Prerequisite: MATH 300 and at least one other 300- or 400-level mathematics course. Mathematical systems including groups, rings, fields, and vector spaces. Only in sequence.

**441 – Topology (3)**

Prerequisite: MATH 300 and at least one other 300- or 400-level mathematics course. Includes topics from point-set topology such as continuity, connectedness, compactness, and product and quotient constructions.

**461 – Topics in Mathematics (3)**

Prerequisite: Course dependent. Topics such as partial differential equations, optimization, Fourier series, ring theory, cryptology, algebraic number theory, coding theory, and modeling. May be taken up to three times for credit.

**471, 472 – Real Analysis (3, 3)**

Prerequisites: MATH 223, 300, and at least one other 300- or 400-level mathematics course. A rigorous, real analysis approach to the theory of calculus. Only in sequence.

**481 – Theory of Interest (3)**

Prerequisite: MATH 223. This course introduces the mathematical concepts underlying the theory of interest. Topics include measurement of interest (including accumulated and present value factors), annuities, yield rates, amortization schedules and sinking funds, bonds and related securities, derivative instruments, and hedging and investment strategies.

**491, 492 – Directed Study (1-3, 1-3)**

Prerequisite: Departmental permission. Individual study beyond the scope of normal course offerings, done under the direction of a faculty member. May lead to graduation with Honors in Mathematics.

**499 – Internship (credits variable)**

Supervised off-campus experience, developed in consultation with the department. Does not count in the major program or minors.